SIDDHARTH INSTITUTE OF ENGINEERING AND TECHNOLOGY :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road – 517583 ### **QUESTION BANK** **Subject with Code :AICD**(16EC5702) Course & Branch: M.Tech – (VLSI) Year & Sem: I-M.Tech & I-Sem ## UNIT -I INTEGRATED DEVICES AND MODELLING AND CURRENT MIRROR | 1. | a) Explain in detail about MOS transistors modeling in saturation and cutoff in | | |----|---|--------| | | highfrequency equivalent circuit. | [5M] | | | b) Explain the advantages of MOS technology over bipolar technology and why | | | | MOS devices gained predominance over bipolar devices. | [5M] | | 2. | a) Draw the small signal model for the common source stage and derive the equations | | | | for small signal and also explain how to maximize the gain. [5] | M] | | | b) Discuss the frequency response of high output impedance current mirror circuit. | [5M] | | 3. | a) Design simple CMOS current mirror circuit and explain its operation | [5M] | | | b) Explain about the source follower with current mirror to supply bias current. | [5M] | | 4. | a)Explain the operation of simple CMOS current mirror | [5M] | | | b) Explain the basic electrical properties of MOS circuit in non-saturated region and | | | | saturatedregion. | [5M] | | 5. | a) Draw the MOS transistor characteristics for enhancement mode and depletion mode. | [5M] | | | b) What are the deficiencies of MOS technology? How they can it be overcome. | [5M] | | 6. | a) Explain briefly large signal modeling for BJT with basic current mirrors. | [5M] | | | b) Discuss the frequency response of single stage BJT amplifiers. | [5M] | | 7. | a) Explain the effect of threshold voltage on MOSFET current equations. | [5M] | | | b) Explain the advantages of MOS technology over bipolar technology and why MOS de | evices | | | gained predominance over bipolar devices. | [5M] | | 8. | a)Draw the structure of a MOS device and explain how it works, with the help of | | | | characteristics. [5M] | | | | b) What are the deficiencies of MOS technology? How they can be overcome. | [5M] | | | | | | 9. | a) Explain in detail about MOS transistors modeling in saturation and cut off in high | | |----|---|------| | | frequencyequivalent circuit. | [5M] | | | b) Discuss in detail about large signal and small signal modeling for BJT. | [5M] | | 10 | a) Explain the effect of threshold voltage on MOSFET current equations. | [5M] | | | b) Explain briefly large signal modeling for BJT with basic current mirrors. | [5M] | #### UNIT -II OPERATIONAL AMPLIFIER DESIGN AND COMPENSENSATION 1.a) Discuss the various short channel effects in MOS devices. [5M] b) Draw the noise model of a source follower with necessary equations.[5M] 2.a) Explain why common mode feedback is required. [5M] b) Explain charge injection error. [5M] 3.a) Draw the circuit diagram of common source stage with active load and find its gain.[5M] b) Explain how the folded-cascode improves the voltage gain. [5M] 4.a) Explain latched comparators. b)Explain the design considerations of Bi-CMOS comparator. 5.a) Explain about advanced current mirror circuits. [5M] b) Explain about two stage CMOS operational amplifier. [5M] 6 Explain about: a)Bi-CMOS comparator. [5M]b) Fully differential amplifier.[5M] 7.a) Explain the terms stability, frequency compensation and phase margin in op-amp [5M] b) Explain what is meant by dominant pole compensation in operational amplifiers. [5M]8.a) Explain in detail about current feedback OP-amplifier. b) Explain about two stage CMOS operational amplifier [5M] 9.a)Discuss about current mirror op-amp. [5M] b) Explain about common-mode feedback circuit [5M] 10. Discuss the operation of op-amps with current mirror load. [10M] # <u>UNIT –III</u> SAMPLE AND HOLD SWITCHED CAPACITOR CIRCUIT-I & II | 1. a) Draw a neat figure and explain the basic operation of Bi-CMOS sample | ie and | | |--|-----------|-------------| | hold circuit. | I | [5M] | | b) What is the function of a first order filter in sample and hold circuit. | | [5M] | | 2. a) Explain the correlated double sampling techniques with suitable exam | ple. | [5M] | | b) Explain about folded cascade operational amplifier operation with | | | | circuit diagram. | [5M] | | | 3. Discuss in detail about | | | | a)CMOS. | [5M] | | | b)Bi-CMOS sample and hold circuit.[5M] | | | | 4. Discuss in detail about correlated double sampling techniques. | | [10M] | | 5. a) Give the schematic of a simple sample and hold circuit using a MOS swit | tch.[5M] | | | b) Explain what is meant by channel charge injection error and how | | | | it is minimized. [5M] | | | | 6. a)Explain MOS sample and hold circuit | | [5M] | | | | | | b)What is the need for double sampling techniques. [5M] | | | | b)What is the need for double sampling techniques. [5M]7. a)Explain the function of folding and pipelining. | | [5M] | | | | [5M]
5M] | | 7. a)Explain the function of folding and pipelining. | | - | | 7. a)Explain the function of folding and pipelining.b) Draw a neat figure and explain the operation of a switched capacitor c | | - | | 7. a)Explain the function of folding and pipelining. b) Draw a neat figure and explain the operation of a switched capacitor c 8. Explain what is meant by correlated double sampling (CDS) technique. | ircuit [5 | - | | 7. a)Explain the function of folding and pipelining. b) Draw a neat figure and explain the operation of a switched capacitor c 8. Explain what is meant by correlated double sampling (CDS) technique. What are the advantages of correlated double sampling techniques. | ircuit [5 | - | | 7. a)Explain the function of folding and pipelining. b) Draw a neat figure and explain the operation of a switched capacitor of the second second | ircuit [5 | 5M] | | a)Explain the function of folding and pipelining. b) Draw a neat figure and explain the operation of a switched capacitor c Explain what is meant by correlated double sampling (CDS) technique. What are the advantages of correlated double sampling techniques. Illustrate with an example how CDS techniques can be used to minimize offsets, 1/f noise and other errors in switched capacitor circuits. | ircuit [5 | 5M] | # **UNIT-IV** DATA CONVERTERS | 1. | a) Explain the operation of over sampling A/D converter. | [5M] | |-----|--|------| | | b) Explain briefly about Hybrid converter. | [5M] | | 2. | a) Differentiate interpolation and decimation. | [5M] | | | b) Explain the design procedure for integrates A/D converters. | [5M] | | 3. | a) Folding and pipelined A/D converters. | [5M] | | | b) Define the terms resolution, offset and gain errors, integral linearity error | | | | an differential non linearity error in respect of Nyquist D/A converters. | [5M] | | 4. | a) Draw the schematic of 4 bit resistor based binary weighted D/A converter a | and | | | explain itoperation. What are the advantages of binary weighted converters? | | | | b) With the help of a neat diagram, explain the working of a successive | | | | approximation ADC. | [5M] | | 5. | a) Explain the working of a Hybrid DAC. | [5M] | | | b) Explain the function of folding and pipelining. | [5M] | | 6. | a) Explain the parameters quantization noise and Nyquist rate with respect | | | | to an ideal D/A &A/D converters. | [5M] | | | b) Write briefly about: | | | | i. Binary scaled converters. | [3M] | | | ii.Pipelined A/D converters. | [2M] | | 7. | a) Explain the design procedure for successive approximation type DAC. | [5M] | | | b) Explain about Cyclic flash type ADC. | [5M] | | 8. | a) Explain in detail about Ideal D/A & A/D converters. | [5M] | | | b) Explain in detail about Nyquist rate D/A converters. | [5M] | | 9. | a) Describe the working of a binary scaled DAC. | [5M] | | | b) Explain about Twostep ADC. | [5M] | | 10. | a) Explain about interpolating A/D converters. | [5M] | | | b) Explain about Time interleaved A/D converters. | [5M] | | | | | # <u>UNIT -V</u> <u>OVER SAMPLING CONVERTERS AND FILTERS</u> | 1. | a) Write about Digital decimation filter. | | [5M] | |----|--|------|-------| | | b) Write about over sampling without noise shaping. | | [5M] | | 2. | Write explanatory notes on: | | | | | a)Over sampling with Noise shaping. | [5M] | | | | b)Continuous time filters. | | [5M] | | 3. | Discuss in detail about band pass over sampling converter [10M] | | | | 4. | Write about over sampling advantages and disadvantages. | | [10M] | | 5. | a) Define the term over sampling ratio (OSR) in data converters. Explain how | | | | | oversampling improves the signal to noise ratio of a data converter. | | [5M] | | | b) Digital decimation filter. | | [5M] | | 6. | a)Explain the structure of a first order noise shaped sigma delta modulator. | [5M] | | | | b) How does noise shaping improve the signal to noise ratio. [5M] | | | | 7. | Discuss in detail about over sampling with and without noise shaping. | | [10M] | | 8. | a) Explain about practical considerations for stability. | | [5M] | | | b) Discuss about linearity of two -level converters. | | [5M] | | 9. | a) Explain about multi bit oversampling converters. | | [5M] | | | b) Explain about dynamic matched current sources in a D/A converter. [5M] | | | 10. a) Discuss about third-order A/D design example. [5M] b) Explain digital calibration A/D converter.[5M] Prepared by: M .SHOBHA